精选解读:[R] LLMs are Locally Linear Mappings: Qwen 3, Gemma 3 and Llama 3 can be converted to exactly equivalent locally linear systems for interpretability
本文是对AI领域近期重要文章 **[R] LLMs are Locally Linear Mappings: Qwen 3, Gemma 3 and Llama 3 can be converted to exactly equivalent locally linear systems for interpretability** (来源: Reddit r/MachineLearning (Hot)) 的摘要与评论。
Original Summary:
This research proposes a novel approach to LLM interpretability by demonstrating that large language models (LLMs) like Qwen-3, Gemma-3, and Llama-3 can be effectively represented as locally linear systems. The method identifies a “linear path” within the transformer architecture, detaching nonlinear components from the gradient calculation. By computing the Jacobian matrix with respect to input embeddings, a “detached Jacobian” is obtained. This Jacobian acts as a set of matrices that linearly transforms input embeddings to accurately predict the next-token output embedding, achieving near-exact reconstruction with minimal error (around 10⁻⁶ for float32 models). This linear representation facilitates improved token attribution for enhanced interpretability, replacing the complex multi-layered nonlinear computations with a single set of matrix multiplications. The research offers a new perspective on understanding LLM inner workings, enabling more precise analysis of input-output relationships.
Our Commentary:
The finding that LLMs can be approximated as locally linear mappings is a significant contribution to LLM interpretability. This approach offers a substantial simplification of the complex nonlinear processes within transformers, making it easier to understand how specific input tokens influence the model’s output. The near-exact reconstruction achieved using the detached Jacobian suggests that the nonlinear activations, while computationally expensive, might not contribute significantly to the overall predictive power *locally*. This raises questions about the necessity and role of deep nonlinear layers in LLMs. The practical impact could be substantial, allowing for more efficient model analysis, debugging, and potentially even the development of more interpretable and streamlined model architectures. The ability to perform near-exact token attribution opens doors to improved fairness and bias detection, as well as a deeper understanding of how these models generalize and make predictions. However, the local nature of this linearity needs further investigation; understanding its limitations and the scale of its applicability across various inputs and models is crucial for a complete assessment of its impact.
中文摘要:
这项研究提出了一种新颖的大语言模型 (LLM) 可解释性方法,通过论证像Qwen-3、Gemma-3和Llama-3这样的大语言模型可以有效地表示为局部线性系统。该方法识别了Transformer架构中的“线性路径”,将非线性组件与梯度计算分离。通过计算关于输入嵌入的雅可比矩阵,获得“分离的雅可比矩阵”。这个雅可比矩阵充当一组矩阵,线性地将输入嵌入转换为精确预测下一个token输出嵌入,以极小的误差(对于float32模型约为10⁻⁶)实现近乎精确的重构。这种线性表示有助于改进token归因以增强可解释性,用单组矩阵乘法代替复杂的多分层非线性计算。这项研究为理解LLM内部工作机制提供了新的视角,使对输入输出关系的分析更加精确。
我们的评论:
大型语言模型可近似为局部线性映射这一发现,是对LLM可解释性的一项重大贡献。这种方法大大简化了Transformer内部复杂的非线性过程,使理解特定输入token如何影响模型输出变得更容易。使用分离雅可比矩阵实现的近乎精确的重建表明,虽然非线性激活在计算上代价高昂,但在局部范围内可能对整体预测能力的贡献并不显著。这引发了人们对LLM中深层非线性层必要性和作用的质疑。其实际影响可能是巨大的,因为它可以实现更高效的模型分析、调试,并可能促成更可解释和简化的模型架构的开发。能够进行近乎精确的token归因,为改进公平性和偏差检测,以及更深入地理解这些模型如何泛化和进行预测打开了大门。然而,这种线性的局部性需要进一步研究;理解其局限性及其在各种输入和模型中的适用范围对于全面评估其影响至关重要。
本文内容主要参考以下来源整理而成: